

Contents

Prologue 3

1 Introduction: h402 Protocol 4
1.1 The Missing Monetary Primitive in HTTP . 4
1.2 Lessons from Usage-Based SaaS, FinOps, and Web3 5

2 Genesis of h402 5

3 Payment Lifecycle:
Quote → Authorise → *Broadcast → Validate → *Settle 7
3.1 Lifecycle Components . 8

3.1.1 Quote . 8
3.1.2 Authorise . 8
3.1.3 *Broadcast . 9
3.1.4 Validate . 9
3.1.5 *Settle . 9
3.1.6 Timeouts & Retries . 9

4 Current Schemas & Forward Evolution 10
4.1 Protocol-Level Types Excerpt) . 10
4.2 Authorization & Payload Wrapper . 10
4.3 EVM “Exact” Payloads Today) . 11
4.4 Path to New Schemes & Networks . 12
4.5 Facilitator & Verification Contracts . 12

5 Monetizing your first AI Agent 12

6 Agent Commerce: A New Market Layer for Code 14
6.1 Instant‑Settlement Service Calls . 15
6.2 Compute, Storage & DePIN Micro‑Markets 15
6.3 Context & Content on Demand . 15
6.4 Device‑to‑Device & Physical‑World Autonomy 15

7 Conclusion 16

Prologue

Thirty-five years after Tim Berners-Lee set aside the 402 Payment Required response
code, the web still lacks a native, programmable unit of value.

In 2025, an autonomous agent can spin up aGPU in 200milliseconds, request a language-
model inference in 80 milliseconds, or stream sensor data to a fleet of microservices
with sub-second round-trips. Yet, to pay for those resources, it must traverse seconds-
to minutes-long card-network paths, opaque batch processors, or ad-hoc crypto gate-
ways.

Over the past decade, we’ve patched around this gap with API keys, SaaS metering dash-
boards, usage spreadsheets, prepaid credits, ad impressions, OAuth scopes, embedded
Stripe buttons, Lightning paywalls, ERC20 approve()/transferFrom() gymnastics, and
a half-dozen proprietary “credits” abstractions. Each workaround solves a local problem
while reinforcing a global one: value exchange on the web remains siloed, lossy, and
hostile to automation.

Today, we are entering a Cambrian moment for autonomous agents, where three forces
converge:

• LLM-powered agency. Language models embedded in scripts, IDEs, and browser
extensions noworchestrate tasks across dozens of APIswithout human clicks. Their
economic loops must run at machine speed.

• Meter-every-byte infrastructure. Cloud providers and CDNs invoice in millisec-
onds, gigabytes, and request counts; cost-allocation tools map every function call
to P&L lines. Fine-grained pricing is now table stakes.

• Plural on-chain settlement. Public ledgers, from Bitcoin and Lightning to high-TPS
L2s and Solana, have proven irreversible low-value transfers at Internet latencies
and pennies per transaction.

In this landscape, an agent should be able to quote, authorize, broadcast, validate, and
settle for a kilobyte of data, a millisecond of compute, or the unlock of a media fragment,
all inside the same HTTP dialogue that already conveys authentication and content ne-
gotiation.

3

1 Introduction: h402 Protocol

h402 is a thin, header-based payment primitive that integrates directly into any HTTP
interaction, turning every request–response cycle into an instant, verifiable settlement
channel.

From a product standpoint, it enables API teams and digital goods providers to expose
pay-per-call, streamed, or subscription pricing, without standing up billing dashboards,
PCI workflows, or bespoke crypto gateways. Agents and end-users experience a single
round-trip that quotes a price, authorizes funds across Bitcoin, Lightning, Solana, or EVM
treasuries, and unlocks the service once the transfer is provably in flight.

1.1 TheMissingMonetary Primitive in HTTP

When HTTP/1.0 codified the 401 Unauthorized and 403 Forbidden status codes in 1996,
it addressed access, not payment. Over time, the web layered on bearer tokens, cookie
sessions, and OAuth scopes, but these mechanisms merely gate content. They do not
describe how much to pay, when to debit, or where funds should settle.

As SaaS proliferated, vendors improvised. Usage dashboards issue API keys to track
request counts; metered services throttle until a credit card batch job clears; consumer
sites embed Stripe or PayPal widgets that bounce users throughmulti-second redirects.

None of these patterns sit naturally in the hot loop of autonomous software.

Workaround Where it lives What it solves Pain for machine-
to-machine flows

API key in header Server’s internal DB Who is calling No price discovery;
manual refills

OAuth 2.0 scope Identity provider Permission granu-
larity

Separate billing
back-end; token
churn

Credit-card token
on file

PSP vault PCI Human cardholder
billing

Seconds-long auth
+ batches; high
fees

Prepaid “credits”
SKU

Vendor database Budget cap Requires manual
purchase; no real-
time settle

Ad-hoc crypto
gateway

Custom endpoint One-off paywall Chain-specific,
opaque off-chain
state

Table 1 Patchwork payment methods in HTTP and their limitations

Because none of these workarounds encode price, payment route, authorization, and
proof of settlement inside the HTTP conversation itself, autonomous agents must juggle
side channels, tolerate multi-second round-trips, or rely on custodial intermediaries.

The absence of a native monetary primitive is now the primary bottleneck preventing
HTTP from powering real-time, agent-to-agent commerce at Internet scale.

4

1.2 Lessons fromUsage-Based SaaS, FinOps, andWeb3

Modern SaaS economics have decisively shifted towardmeter-everything pricing. Snowflake
charges per second of warehouse runtime, Datadog per ingested gigabyte, and API
native firms like OpenAI expose token-level tariffs. Analysts estimate that around 61%
of SaaS providers now use usage- or consumption-based billing, a figure that has risen
sharply since 2020 and is accelerating further as AI workloads drive per-request com-
pute costs upward.1

Investors reward the model’s alignment between revenue and usage; operators demand
granular, automated metering down to the function call.

This shift has also reshaped financial operations. FinOps teams now allocate cloud costs
in near real-time, tagging every Lambda invocation, GPU pod, and egress byte to a spe-
cific business unit. According to the 2025 State of FinOps survey, 40% of teams already
manage SaaS spend in the same dashboards as their cloud spend, with a trend toward
65% within a year.2

Meanwhile, on-chain micropayments have moved beyond proof-of-concept. Bitcoin’s
Lightning Network now handles roughly 14–15% of all Bitcoin payment flows at major
processors, a tenfold increase since 2022, achieving sub-cent fees and near-instant fi-
nality for sub-dollar transactions.3

These three arcs, fine-grained SaaS metering, budget-aware FinOps, and scalable mi-
cropayments, converge on a shared requirement: a native HTTP primitive that quotes,
authorizes, and settles value within the same request path.

h402 aims to close that loop, letting usage events become payment events, without de-
tours through monthly invoices, batch-card processors, or bespoke crypto gateways.

2 Genesis of h402

The seed of h402 was planted in December 2024 when the BitGPT team partnered with
various AI-agent development frameworks, united by a shared vision: to build a decen-
tralized mesh of autonomous agents.

As we collaborated with the community, two major friction points emerged:

• Discoverability. Newly built agents lacked a uniform mechanism to be discovered,
or to discover remote services and the tasks they could perform.

• Monetization. Running agents is expensive, both in terms of compute and tokens.
Builders wanted a reliable way to earn for contributing to the network.

While many projects are tackling the discoverability challenge, we chose to focus on
monetization.

Early experiments, such as hard-coded price endpoints, prepaid token buckets, and
network-specific paywalls, solved isolated cases but failed to support general-purpose,
inter-agent commerce. In January 2025, the team refocused on a protocol that would:

• Embed price discovery and settlement in every request–response round-trip.

1Source: BillingPlatform, Business Insider
2Source: ProsperOps, 2025 State of FinOps Survey
3Source: Best Bitcoin & Crypto Payment Processor, The Block

5

• Remain deterministic, no invisible off-chain state; every artefact auditable.
• Support multiple treasuries from day one EVM, Solana, Bitcoin, Lightning).
• Slot cleanly into existing HTTP tooling without reinventing headers or status codes.

Out of this effort, h402 was born. Rather than inventing a brand-new namespace, h402
reuses the header names and JSON schemas emerging from the broader “402 family”
(notably x402 by Coinbase and L402 by fewsats), allowing API gateways, doc generators,
and client SDKs to converge instead of fork.

2.1 Design Tenets: Chain-Plural • Deterministic • Extensible

h402 is architected around three non-negotiable principles that shape every header field,
JSON artefact, and reference implementation.

Tenet Definition Practical Outcome
Chain-Plural The protocol treats mul-

tiple settlement networks,
EVM chains, Solana, Bitcoin
L1, Lightning, as first-class
options rather than “adap-
tors.”

A single Quote can expose parallel
price routes; a client selects the trea-
sury that best meets its latency, fee,
and regulatory constraints. No ven-
dor lock-in, no chain maximalism.

Deterministic Every step, Quote,
Authorize, Broadcast,
Validate, Settle, emits an
immutable artefact whose
content alone suffices for
replay protection, audit,
and dispute resolution.

Gateways require zero hidden ses-
sion state. Retries and failovers are
stateless. Auditors can verify a pay-
ment flow from stored JSON and on-
chain proofs.

Extensible New cryptosystems, com-
pliance payloads, or pric-
ing mechanisms can be
added via optional headers
and versioned JSON fields,
without breaking clients.

Future additions, ZK receipts, CBDC
rails, Travel Rule envelopes, can in-
tegrate seamlessly. Older clients ig-
nore what they don’t understand.

These tenets keep h402 lean enough for edge functions, yet robust enough for enter-
prise treasuries, ensuring the protocol evolves with, not against, the rapidly diversifying
landscape of networks, regulations, and agentic use cases.

2.2Why Not x402?

We created h402, short for “HTTP 402”, based on the open schema designs introduced
with x402 by Coinbase.

While we maintain full compatibility with the open schema, we’re building an implemen-
tation that goes far beyond what x402 currently offers:

• Speed and Autonomy. A design philosophy focused on performance, flexibility,
and production use, not corporate alignment

6

• Infrastructure Requirements. Integration with infrastructure like Redis queues,
NBXplorer, and other systems critical for real-world crypto payments

Moreover, we needed support for features that x402 does not currently provide:

• Non-permit Tokens. x402 assumes EIP2612-style permit-based tokens, which
USDC supports, but USDT and others do not.

• Post-Broadcast Validation. Essential for cryptocurrencies like Bitcoin, which re-
quire confirmation-based payment semantics.

• Polling-based Systems. Needed as fallback for payment providers and for se-
tups based on standalone address verification, beyond signed payload + broadcast
flows.

We fully respect the foundation x402 provides, but building h402 was a necessary move.
Our approach is simple: preserve the protocol schema, but refuse to be limited by some-
one else’s tech stack or product roadmap.

3 Payment Lifecycle:
Quote→Authorise→ *Broadcast →Validate→ *Settle

The h402 handshake distills every payment into five deterministic steps. Each step yields
a machine-readable artifact that survives retries, failovers, and audits. The server (“fa-
cilitator gateway”) never needs hidden session state, and the client, be it a human wallet,
bot, or autonomous agent, can always resume from the last artifact on record.

h402 in action

From an autonomous AI agent’s perspective, the handshake feels like a single-round-trip
extension of the HTTP it already speaks. The agent hits an endpoint, receives a 402 re-
sponse detailing the exact price (across several currencies), signs an authorization using

7

its wallet module, and rebroadcasts the request with the signature inline. Its networking
loop then waits for a short “payment-settled” callback, either zero-confirmation for Light-
ning, or a few blocks for Bitcoin/EVM, before streaming the response payload onward.

Because each artifact (quote JSON, sig blob, tx hash, receipt) is deterministic, the agent
can safely retry after crashes, migrate between hosts, or delegate settlement to another
micro-service without losing budget or state. In effect, h402 turns “fetch-then-pay” into
“quote-and-settle inside fetch,” enablingmillisecond-latency commerce without bespoke
billing APIs or human escrow.

Stage Artifact
(hash-stable)

Timeout Retry-safe?

1 Quote quote.json
(price, ex-
piry, treasury
routes, nonce)

2–5s Yes (same nonce)

2 Authorise auth.sig
EIP2612
permit, PSBT,
delegated-
spend)

10–30s Yes (deterministic sig)

3 Broadcast txHash or
Lightning pre-
image

Chain mempool TTL Yes (chain rejects dupes)

4 Validate receipt.json
(confirmations,
block height)

Configurable 0–3 conf) Yes (idempotent lookup)

5 Settle settled.json
(status, FX
details)

SLA-bound Yes (stateless write)

3.1 Lifecycle Components

3.1.1 Quote

The client requests a resource. The gateway replies with HTTP 402 and a Quote header
containing a JSONblob listing permitted payment routes (e.g., USDC/BSC, BTC/LN, SOL/Solana),
unit price, expiry timestamp, and a unique nonce. The quote is cryptographically signed
by the gateway so that any replica can later verify it offline.

3.1.2 Authorise

Using the quote’s nonce, the client produces a deterministic authorization artifact:

• EVM→ ERC20 Permit signature
• Bitcoin→ PSBT partial signature

8

• Solana→ delegated-spend instruction

No funds move yet, this step simply proves intent and locks price/expiry. The gateway re-
sponds with 202 Accepted, echoing the authorization hash so both sides share the same
checkpoint.

3.1.3 *Broadcast

Either party may now broadcast the on-chain transaction. For permit flows, the gate-
way typically pushes the signed calldata; for PSBT or Lightning flows, the client does.
The artifact of record is the txHash (or invoice pre-image), which can be independently
verified.

*It’s important to note that the Broadcast component is required only for post-broadcast
payment validation that do not use permit-like logics.

3.1.4 Validate

h402 requires proof of on-chain inclusion before service is delivered or rate limits are
lifted. Confirmation depth is negotiable per quote (e.g., "conf": 0 for optimistic L2s, 3
for BTC main chain). The gateway logs a receipt.json that binds quoteHash, authHash,
and txHash to the observed block height.

This post-broadcast validation (not present in x402) enables support for Bitcoin and polling-
based systems, without custodial hacks.

3.1.5 *Settle

Once the confirmation target is reached, or the timeout expires, the gateway emits a final
settled.json (success, partial, or failed). On success, the resource is streamed, or the
HTTP status is downgraded from 402 to 200 OK.

*It’s important to note that the Settle component is required only for permit-like payment
validation that are not broadcasted before reaching the Validate step.

3.1.6 Timeouts & Retries

• Quote expiry prevents stale pricing; client simply re-requests.
• Authorise idempotency is guaranteed via nonce; replays return 409 Conflict.
• Broadcast timeout (e.g., 60s) auto-cancels unpaid quotes.
• Validation timeout converts 0-conf optimism into fallback pessimism.

Because each artifact is self-describing and hash-stable, any component, edge lambda,
origin server, or auditor, can reconstruct state from disk without trusting a live database.
The result: a payment rail that mirrors HTTP’s statelessness while satisfying chain-plural
finality guarantees.

9

4 Current Schemas & Forward Evolution

h402 serializes every artifact as a hash-stable JSON object (mirrored in the reference
TypeScript types below). The only scheme currently implemented is exact (pay the pre-
cise amount once), but the envelope is designed to support future schemes, capped,
streamed, subscription, which can reuse the same top-level fields while extending the
extra payload.

4.1 Protocol-Level Types Excerpt)

Core Quote & Response

type PaymentDetails = {
scheme: ”exact”; // will accept new schemes later
namespace: string | null; // e.g. ”evm”, ”bitcoin”, ”solana”
networkId: string; // chain or LN network (e.g. ”1”, ”mainnet”, ”testnet”)
amountRequired: bigint;
amountRequiredFormat: ”smallestUnit” | ”humanReadable”;
payToAddress: string; // contract / LN invoice / SOL pubkey
tokenAddress: string | null; // ERC‑20, SPL, or native if null

// opaque resource identifier
resource: string;
description: string;
mimeType: string;

outputSchema: object | null; // JSON Schema of the eventual payload
requiredDeadlineSeconds: number; // seconds to settle
extra: Record<string, any> | null; // scheme‑specific extensions

};

type PaymentRequired = {
version: 1;
accepts: PaymentDetails[]; // multi‑token, multi‑chain quotes
error: string | null;

};

Narrative: A gateway can return several PaymentDetails objects in a single quote, for
example, USDC on Ethereum mainnet and BTC via Lightning, letting the client pick the
optimal route. Everything needed for price discovery, risk scoring, and UX display is
embedded; no side-channel lookups are required.

4.2 Authorization & PayloadWrapper

type PaymentPayload<T> = {
version: 1;
scheme: ”exact”;
namespace: ”evm” | ”btc” | ”svm” | ”ln”;
networkId: string;
payload: T; // chain‑specific object (see below)
resource: string;

};

10

PaymentPayload is a thin envelope that remains stable while the inner payload adapts to
match each settlement network. This keeps gateway parsing logic consistent across new
chains or compliance extensions.

4.3 EVM “Exact” Payloads Today)

Native ETH Transfer
type NativeTransferPayload = {
type: ”nativeTransfer”;
signature: Hex; // EIP‑1559 tx sig
transaction: {
from: Hex; to: Hex; value: bigint; nonce: number;

};
};

ERC20 Transfer
type TokenTransferPayload = {
type: ”tokenTransfer”;
signature: Hex;
transaction: {
from: Hex; to: Hex; value: bigint; data: Hex; nonce: number;

};
};

ERC2612 Permit Gas-less Approval)
type AuthorizationPayload = {
type: ”authorization”;
signature: Hex;
authorization: {
from: Hex; to: Hex; value: bigint;
validAfter: bigint; validBefore: bigint; nonce: Hex; version: string;

};
};

These three variants already cover approximately 90% of EVM use cases, native fees,
stablecoin payments, and meta-transactions. Each serializes deterministically, enabling
the same hash guard to be reused across retries in edge functions, GPU jobs, or IoT
flows.

11

4.4 Path to New Schemes & Networks

Coming Next Schema Impact Field Changes Description
Capped scheme: ”capped” maxAmountRequired

becomes mandatory
Quote advertises maxi-
mum spend; client locks
funds once, server
streams partial receipts.

Streamed scheme: ”streamed” extra:{unit:”token”, rate:
”100 wei”}

Gateway emits mid-
stream meter ticks;
settlement occurs when
stream closes.

Subscription scheme: ”subscription” extra:{interval:”30d”, re-
newals:3

One authorization
covers recurring broad-
casts; validation resets
at each renewal cycle.

Each extension builds on scheme, extra, and other optional fields already present in PaymentDetails.
Older clients ignore what they don’t recognize, while newer clients unlock richer billing patterns,
forward compatibility by design.

4.5 Facilitator & Verification Contracts

The facilitator utility types, FacilitatorRequest, VerifyResponse, and SettleResponse, remain
unchanged across schemes. Only the validation logic changes (e.g., number of confirmations
required, type of proof), ensuring that gateways, observability pipelines, and FinOps tools can
support new payment styles through configuration, not rewrites.

5 Monetizing your first AI Agent

The quickest path to a working h402 integration is a thin gateway that sits in front of your HTTP
service, advertises a price, verifies the client’s payment artifact, and (optionally) settles the trans-
action on-chain.

The example below uses Node + Express and the reference @bit-gpt/h402 package. The same
pattern translates to FastAPI, Go Fiber, or edge runtimes.

These implementations are subject to change. Please visit our GitHub repository to get up-
to-date examples.

5.1 Install the SDK

npm install @bit-gpt/h402

12

https://github.com/bit-gpt/h402

5.2 Declare the Price Quote

// payment-config.ts
import { PaymentDetails } from ”@bit-gpt/h402/types”;

export const paymentDetails: PaymentDetails = {
description: ”AI‑API Access”,
price: { currency: ”USDT”, amount: ”0.10”, network: ”bsc” },
recipient: ”0xYourWalletAddress”,
expiresIn: 900 // quote valid for 15min

};

Everything the client needs, amount, token, chain, expiry, is captured in one deterministic ob-
ject.

5.3Wire Up Three Endpoints

// server.ts (� 50 lines in total)
import express from ”express”;
import { verify, settle } from ”@bit-gpt/h402/facilitator”;
import { isH402PaymentValid } from ”@bit-gpt/h402/middleware”;
import { paymentDetails } from ”./payment-config”;

const app = express();
app.use(express.json());

// 1� Verification: confirms sig & tx hash
app.post(”/api/verify”, async (req, res) => {
const { payload } = req.body;
const result = await verify(payload, paymentDetails);
return res.json({ data: result });

});

// 2� Settlement: pushes tx on‑chain if you hold the key
app.post(”/api/settle”, async (req, res) => {
const { payload } = req.body;
const result = await settle(payload, paymentDetails, process.env.PRIVATE_KEY);
return res.json({ success: true, txHash: result.txHash });

});

// 3� Protected resource: auto‑402 if unpaid
app.get(”/api/premium-data”, async (req, res) => {
const paymentHeader = req.header(”402-Payment”);

if (!paymentHeader)
return res.status(402).json({ error: ”Payment Required”, details: paymentDetails });

const ok = await isH402PaymentValid(paymentHeader, paymentDetails, {
verifyEndpoint: ”http://localhost:3000/api/verify”

});

if (!ok) return res.status(402).json({ error: ”Invalid Payment” });

return res.json({ data: ”�� Your premium content here” });
});

13

app.listen(3000);

Key idea: The resource route does not store any hidden session state, everything it needs is
encoded in the client’s 402-Payment header plus the deterministic quote.

5.4 Client Flow

import { createPayment } from ”@bit-gpt/h402”;

const walletClient = /* Wagmi / Viem wallet instance */;

// 1. Produce header from the quote
const paymentHeader = await createPayment(paymentDetails, { evmClient: walletClient });

// 2. Call the premium API
const res = await fetch(”http://localhost:3000/api/premium-data”, {
headers: { ”402-Payment”: paymentHeader }

});
console.log(await res.json());

5.5 Sequence Recap

• Server returns 402 + deterministic quote.
• Client signs and sends the 402-Payment header.
• Server verifies and, optionally, settles on-chain.
• Content is streamed once verify() reports a valid proof.

This minimalist gateway demonstrates that pay-per-use crypto billing fits inside a single microser-
vice, no PCI vault, no OAuth server, and no custom credit system required.

From here, you can plug the same facilitator into edge runtimes, add Prometheus hooks, or swap
in Lightning and Solana adaptors without touching the protected route’s core logic.

6 Agent Commerce: A NewMarket Layer for Code

For the first time since HTTP’s birth, software entities, AI agents, can quote, pay, and consume a
servicewithout pausing for human approval. h402 turns that capability into an economic substrate:
an agent commerce layer, where every API call, data packet, or watt‑second of energy can be
priced, traded, and settled by code.

Below is a non‑exhaustive map of what that unlocks today, and where it is already emerging.

14

6.1 Instant‑Settlement Service Calls

What agents buy Example price point Why it matters
LLM inference bursts $0.002 per 1K tokens Agents compose specialised models

on demand, paying only for the
responses kept.

Real‑time market data $0.02 per options quote Trading bots synthesise bespoke
feeds instead of subscribing to full
exchanges.

Per‑frame video analytics $0.005 per image Drones pay edge nodes for object
detection mid‑flight, deciding routes
in real time.

Today, these payments rely on pre-loaded credits or card vaults. h402 collapses quote → set-
tle into the request itself, allowing thousands of agents to spin workloads up and down every
second.

6.2 Compute, Storage & DePINMicro‑Markets

DecentralisedGPUmarketplaces likeHyperbolic or io.net already expose $0.40–$0.70 per GPU‑minute
spot prices, up to 75% below hyperscaler on-demand rates. With h402:

• Agent-driven spot bidding: LLM swarms can auction off 30‑second GPU slices, locking
capacity the moment a Lightning or SOL payment hits the mempool.

• Elastic storage: Context-hungry agents pay per GB‑hour as they expand vector stores,
relinquishing chunks automatically when budget envelopes close.

• DePIN rewards: Edge devices stream telemetry and collect instant satoshi payouts via
Lightning, already validated in today’s DePIN networks.

6.3 Context & Content on Demand

Fine-tuned assistants thrive on proprietary knowledge but choke on blanket subscriptions. An
h402-enabled content provider can expose:

• Per-document legal archives at $0.10 per filing
• Premium news paragraphs priced by the character, unlocking just the cited snippet
• Scientific datasets purchased by the feature column, not the whole CSV

Academic studies and Lightning pilots show frictionless sub‑cent micropayments can increase
conversion rates and reduce subscription fatigue.4

6.4 Device‑to‑Device & Physical‑World Autonomy

• EV charging robots negotiate spot energy with charging pads, paying per kilowatt as the
car parks.

• Smart factories let CNC machines rent tool heads from neighbouring cells, settling us-
age‑based wear costs every few minutes.

• Logistics drones stream air-corridor tolls to urban UTM servers, paying per metre flown;
fees adjust dynamically with weather and traffic.

4See relevant discussion on arXiv and Medium pilot summaries.

15

https://hyperbolic.xyz
https://io.net

These interactions demand millisecond quotes and deterministic receipts, conditions h402 was
purpose-built to meet.

7 Conclusion

The web’s original blueprint left a monetary slot unfilled. Three decades later, the rise of au-
tonomous software makes that omission impossible to ignore.

h402 is our answer: a stateless, chain‑plural, and extensible payment primitive that nests natively
inside HTTP. By collapsing price discovery, authorisation, broadcast, validation, and settlement
into a single, deterministic handshake, the protocol frees agents, humans, and services from the
slow detours of card vaults, dashboards, and proprietary credit systems.

What follows is more than cheaper payments. h402 lays the tracks for agent commerce: LLM
swarms leasing GPUs by the second, drones bartering airspace in real time, knowledge bases sell-
ing paragraphs instead of subscriptions, andmicro‑factories clearing invoicesmachine‑to‑machine
every few minutes.

Each of these interactions inherits the protocol’s auditability, compliance hooks, and pick‑your‑chain
optionality, attributes that let enterprises adopt it with confidence while innovators extend it to-
ward yet‑unimagined rails.

Every new integration brings us closer to a web where value moves at the same speed, and
with the same openness, as information.

16

	Prologue
	Introduction: h402 Protocol
	The Missing Monetary Primitive in HTTP
	Lessons from Usage-Based SaaS, FinOps, and Web3

	Genesis of h402
	Payment Lifecycle: Quote → Authorise → *Broadcast → Validate → *Settle
	Lifecycle Components
	Quote
	Authorise
	*Broadcast
	Validate
	*Settle
	Timeouts & Retries

	Current Schemas & Forward Evolution
	Protocol-Level Types (Excerpt)
	Authorization & Payload Wrapper
	EVM “Exact” Payloads (Today)
	Path to New Schemes & Networks
	Facilitator & Verification Contracts

	Monetizing your first AI Agent
	Agent Commerce: A New Market Layer for Code
	Instant‑Settlement Service Calls
	Compute, Storage & DePIN Micro‑Markets
	Context & Content on Demand
	Device‑to‑Device & Physical‑World Autonomy

	Conclusion

